上海奔普仪器科技有限公司
安全检测仪器 | 计量检测仪器 | 暖通环保仪器 | 无损检测仪器 | 设备诊断仪器 | 电子测试仪器 | 电工测试仪器 | 水质分析仪器 | 气体检测仪器 | 过程校验仪器 |

左手材料:开辟材料世界的另一个半边天

http://www.17360.cn
标签TAG:
浏览 次【字号 】 发布时间:2012-7-13 打印本页
    2001年美国加州大学制成一种新型异性材料并观察到其反常折射定律,引起学界关注;2003年美国麻省理工和东北大学实验证明了这种异性材料的可制造,引起学界、业界和军方的高度重视;2003年美国《科学》将这种奇异材料的研制纳入年度十大科学进展。这是科学界谓之的一种颠倒了物理学常规定律的“左手材料”,其反常的特性预示着材料世界前所未有的革命性时刻的到来。上海科学家四年前介入该领域研究并已收获不浅。3月18日,市科委基础研究处组织召开了《左手材料和负折射现象及应用》学术研讨会,以期通过学术交流促进学科交叉创新,推动本市该领域研究获得重大突破。本刊特此报道左手材料的发展背景、意义及3·18研讨会达成的共识和科学家们的建议,供决策参考。

  左手材料:开辟材料世界的另一个半边天
一、左手材料——源于上世纪60年代科学家的假想

  本世纪以来,一种被称为“左手材料”的人工复合材料在固体物理、材料科学、光学和应用电磁学领域内开始获得愈来愈广泛的青睐,对其的研究正呈现迅速发展之势,而它的出现却是源于上世纪60年代前苏联科学家的假想。

  物理学中,介电常数ε和磁导率μ是描述均匀媒质中电磁场性质的最基本的两个物理量。在已知的物质世界中,对于电介质而言,介电常数ε和磁导率μ都为正值,电场、磁场和波矢三者构成右手关系,这样的物质被称为右手材料(right-handed materials,RHM)。这种右手规则一直以来被认为是物质世界的常规,但这一常规却在上世纪60年代开始遭遇颠覆性的挑战。1967年,前苏联物理学家Veselago在前苏联一个学术刊物上发表了一篇论文,首次报道了他在理论研究中对物质电磁学性质的新发现,即:当ε和μ都为负值时,电场、磁场和波矢之间构成左手关系。他称这种假想的物质为左手材料(left-handed materials,LHM),同时指出,电磁波在左手材料中的行为与在右手材料中相反,比如光的负折射、负的切连科夫效应、反多普勒效应等等。这篇论文引起了一位英国人的关注,1968年被译成英文重新发表在另一个前苏联物理类学术刊物上。但几乎无人意识到,材料世界从此翻开新的一页。

  由于左手材料的显著特点是它的介电常数和磁导率都是负数,所以有人也称之为“双负介质(材料)”,通常也被称为“负折射系数材料”,或简称“负材料”。

二、左手材料——本世纪初的突破引发人们无限遐想

  左手材料的研究发展并不一帆风顺。在这一具有颠覆性的概念被提出后的三十年里,尽管它有很多新奇的性质,但由于只是停留在理论上,而在自然界中并未发现实际的左手材料,所以,这一怪诞的假设并没有立刻被人接受,而是处于几乎无人理睬的境地,直到时光将近本世纪时才开始出现转机。原因在于英国科学家Pendry等人在1998~1999年提出了一种巧妙的设计结构可以实现负的介电系数与负的磁导率,从此以后,人们开始对这种材料投入了越来越多的兴趣。2001年的突破,使左手材料的研究在世界上渐渐呈现旋风之势。

  2001年,美国加州大学San Diego分校的David Smith等物理学家根据Pendry等人的建议,利用以铜为主的复合材料首次制造出在微波波段具有负介电常数、负磁导率的物质,他们使一束微波射入铜环和铜线构成的人工介质,微波以负角度偏转,从而证明了左手材料的存在。

  2002年7月,瑞士ETHZ实验室的科学家们宣布制造出三维的左手材料,这将可能对电子通讯业产生重大影响,相关研究成果也发表在当月的美国《应用物理快报》上。

  2002年底,麻省理工学院孔金瓯教授从理论上证明了左手材料存在的合理性,并称这种人工介质可用来制造高指向性的天线、聚焦微波波束、实现“完美透镜”、用于电磁波隐身等等。左手材料的前景开始引发学术界、产业界尤其是军方的无限遐想。

  2003年是左手材料研究获得多项突破的一年。美国西雅图 Boeing Phantom Works 的C. Parazzoli 与加拿大University of Toronto电机系的G. Eleftheriades所领导的两组研究人员在实验中直接观测到了负折射定律;Iowa State University的S. Foteinopoulou也发表了利用光子晶体做为介质的左手物质理论仿真结果;美国麻省理工学院的E.Cubukcu 和K.Aydin 在《自然》杂志发表文章,描述了电磁波在两维光子晶体中的负折射现象的实验结果。基于科学家们的多项发现,左手材料的研制赫然进入了美国《科学》杂志评出的2003年度全球十大科学进展,引起全球瞩目。

  2004年,国际学术界开始出现上海科学家的身影。“973”光子晶体项目首席科学家、复旦大学的资剑教授领导的研究小组经过两年的研究与巧妙设计,利用水的表面波散射成功实现了左手介质超平面成像实验,论文发表于著名的《美国物理评论》杂志上,即刻引起学术界的高度关注,被推荐作为《自然》杂志焦点新闻之一。同济大学波耳固体物理研究所以陈鸿教授为首的研究小组从2001年开始对左手材料展开研究,经过两年的研究,在基础理论和材料的制备与表征方面取得了重大进展,成果在国际物理学著名刊物上发表,2004年在国际微波与毫米波技术大会上作大会报告,并将在2005年日本召开的国际微波与光学技术研讨会上作邀请报告。

左手材料在本世纪初已迅速成为科学界的研究热点。据不完全统计,在国际主要学术刊物上,2000年与2001年所发表的关于左手征材料的研究论文数量分别是13篇与17篇,2002年上升至60篇,2003年上升到100篇以上。

三、左手材料——制造的实现孕育其巨大的应用前景

  左手材料的巨大应用前景源于它的制造实现。Pendry在2000年就曾建议制作“超级透镜”(也称“理想棱镜”)以实现左手材料的应用,这一建议在2004年被变成了现实,科学家利用左手材料已经成功制造出平板微波透镜。2004年2月,俄罗斯莫斯科理论与应用电磁学研究所的物理学家宣布他们研制成功一种具有超级分辨率的镜片,但是他们的技术要求被观察的物体几乎接触到镜片,这一前提使其在实际应用中难以操作。同年,加拿大多伦多大学的科学家制造出一种左手镜片,其工作原理与具有微波波长的射线有关,这种射线在电磁波频谱中的位置紧邻无线电波。两国科学家的研究成果获得科学界的高度赞赏,被美国物理学会评为2004年度国际物理学会最具影响的研究进展。

  此外,根据左手材料不同凡响的特性,科学家已预言可以应用于通讯系统以及资料储存媒介的设计上,用来制造更小的移动电话或者是容量更大的储存媒体;等效的负折射媒质电路可以有效减少器件的尺寸,拓宽频带,改善器件的性能。未来,左手材料将会在无线通信的发展中起到不可忽略的作用。

四、左手材料——已被列入我国国家自然科学基金2005年重点项目指南

  左手材料的研究已引起我国有关科学界的关注。除上海科学家以外,香港科技大学、中科院物理研究所、南京大学、北京大学、西北工业大学等单位均有科学家先行涉足这一领域的研究。国家自然科学基金委将左手材料和负折射效应的研究列入了2005年重点交叉项目指南中,在数理部和工程与材料学部联合的“准相位匹配研究中的若干前沿课题”主题中将“左手材料相关基础性问题研究”列为主要探索内容之一,在数理部和信息科学部联合的“周期和非周期微结构的新光子学特性”主题中将“周期及非周期微结构中在太赫兹、近红外及可见波段的负折射效应研究”列为主要探索内容之一。同时,基金委信息学部将“异向介质理论与应用基础研究”列入2005年重点项目指南,异向介质即是左手材料的另一个名称。

目前国内(包括上海)开展左手材料与负折射效应研究的主要单位的概况如下:

 中科院物理所:该所的磁学国家重点实验室广泛开展新型磁性功能材料的探索和研究,研究和探索各种新型磁性材料,如铁磁性形状记忆合金,各种高频(直到10-100G范围)具有高磁导率,低损耗(如DC-DC convertor材料和左手材料)等;该所的微加工实验室在低维人工结构制作与应用研究方面重点开展了二维不同结构光子晶体与左手材料、超导量子结构与器件等的研究。

 香港科技大学:该校的纳米科技研究所所长陈子亭教授是国际知名的凝聚态物理与光子晶体理论研究专家,主要从事光子晶体与左手材料方面的研究。

 南京大学:该校电子科学与工程系的冯一军教授主要从事电磁场与微波技术,新型人工电磁材料及微波器件等研究,目前承担新型人工电磁介质的理论与应用研究(国家重点基础研究发展计划973项目)和左手人工电磁材料和微波器件(教育部博士点基金项目)。

 同济大学:波耳固体物理研究所的陈鸿教授、张冶文教授等人在左手材料与负折射效应的基础理论、表征手段和器件应用等方面已取得突破。

 复旦大学:以资剑教授(“973”项目首席科学家)、周磊教授等为首,在左手材料超平面成像、表征与器件应用(微波天线)等方面已取得重大进展,目前正与同济大学、华东师范大学、中科院上海微系统所、中科院上海技术物理所、中科院物理研究所、南京大学、美国UCLC和AMES等研究机构开展这一领域的合作研究。该校的理论物理、凝聚态物理和光学三个专业学科均为国家重点学科和博士点。

 上海理工大学:以光学与电子信息工程学院庄松林院士为首。庄院士长期从事应用光学、光学工程和光电子学的研究,他设计了百余种光学系统及仪器,是国内率先开展光学系统CAD的研究者;在复物体的位相恢复研究中提出多种光学方法,开创了该领域研究的新方向;所研制的CdSe硒化镉液晶光阀达到了当时国际先进水平。
本文网址:http://www.17360.cn/News/ZiXunView-1619.html
上一条:汽车仪表技术演绎三大新趋势 下一条:污水费上调 南昌用户水表今起抄表结算
    
奔普仪器| 联系我们 | 订单查询 | 付款方式 | 留言或建议 | 关于我们
 客服邮箱:tech17@126.com 客服电话:021-31266107 邮政编码:201199
 公司地址:上海市沁春路1366弄38号803室 网站地址:www.17360.cn
 Copyright © 2005-2014 上海奔普仪器科技有限公司 All Rights Reserved.

网站备案:沪ICP备05008086号
销售区域:北京-上海-江苏-浙江-天津-山东-河南-河北-安徽-江西-福建-湖南-广东-广西-湖北-重庆-辽宁-吉林-山西-四川-云南-贵州-陕西-西藏-新疆-青海-甘萧-南京-常州-无锡-苏州-镇江-扬州-南通-湖州-昆山-嘉兴-宁波-杭州-温州-合肥-福州-厦门-南昌-武汉-长沙-成都-黑龙江-内蒙古等全国各地.